Network-Regularized Sparse Logistic Regression Models for Clinical Risk Prediction and Biomarker Discovery
نویسندگان
چکیده
منابع مشابه
Network-regularized Sparse Logistic Regression Models for Clinical Risk Prediction and Biomarker Discovery
Molecular profiling data (e.g., gene expression) has been used for clinical risk prediction and biomarker discovery. However, it is necessary to integrate other prior knowledge like biological pathways or gene interaction networks to improve the predictive ability and biological interpretability of biomarkers. Here, we first introduce a general regularized Logistic Regression (LR) framework wit...
متن کاملLazy Sparse Stochastic Gradient Descent for Regularized Mutlinomial Logistic Regression
Stochastic gradient descent efficiently estimates maximum likelihood logistic regression coefficients from sparse input data. Regularization with respect to a prior coefficient distribution destroys the sparsity of the gradient evaluated at a single example. Sparsity is restored by lazily shrinking a coefficient along the cumulative gradient of the prior just before the coefficient is needed. 1...
متن کاملSparse logistic regression with Lp penalty for biomarker identification.
In this paper, we propose a novel method for sparse logistic regression with non-convex regularization Lp (p <1). Based on smooth approximation, we develop several fast algorithms for learning the classifier that is applicable to high dimensional dataset such as gene expression. To the best of our knowledge, these are the first algorithms to perform sparse logistic regression with an Lp and ela...
متن کاملLeukemia Prediction Using Sparse Logistic Regression
We describe a supervised prediction method for diagnosis of acute myeloid leukemia (AML) from patient samples based on flow cytometry measurements. We use a data driven approach with machine learning methods to train a computational model that takes in flow cytometry measurements from a single patient and gives a confidence score of the patient being AML-positive. Our solution is based on an [F...
متن کاملCombining multiple biomarker models in logistic regression.
In medical research, there is great interest in developing methods for combining biomarkers. We argue that selection of markers should also be considered in the process. Traditional model/variable selection procedures ignore the underlying uncertainty after model selection. In this work, we propose a novel model-combining algorithm for classification in biomarker studies. It works by considerin...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE/ACM Transactions on Computational Biology and Bioinformatics
سال: 2018
ISSN: 1545-5963
DOI: 10.1109/tcbb.2016.2640303